SDS Interferes with SaeS Signaling of Staphylococcus aureus Independently of SaePQ

نویسندگان

  • Phuti E. Makgotlho
  • Gabriella Marincola
  • Daniel Schäfer
  • Qian Liu
  • Taeok Bae
  • Tobias Geiger
  • Elizabeth Wasserman
  • Christiane Wolz
  • Wilma Ziebuhr
  • Bhanu Sinha
چکیده

The Staphylococcus aureus regulatory saePQRS system controls the expression of numerous virulence factors, including extracellular adherence protein (Eap), which amongst others facilitates invasion of host cells. The saePQRS operon codes for 4 proteins: the histidine kinase SaeS, the response regulator SaeR, the lipoprotein SaeP and the transmembrane protein SaeQ. S. aureus strain Newman has a single amino acid substitution in the transmembrane domain of SaeS (L18P) which results in constitutive kinase activity. SDS was shown to be one of the signals interfering with SaeS activity leading to inhibition of the sae target gene eap in strains with SaeS(L) but causing activation in strains containing SaeS(P). Here, we analyzed the possible involvement of the SaeP protein and saePQ region in SDS-mediated sae/eap expression. We found that SaePQ is not needed for SDS-mediated SaeS signaling. Furthermore, we could show that SaeS activity is closely linked to the expression of Eap and the capacity to invade host cells in a number of clinical isolates. This suggests that SaeS activity might be directly modulated by structurally non-complex environmental signals, as SDS, which possibly altering its kinase/phosphatase activity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A point mutation in the sensor histidine kinase SaeS of Staphylococcus aureus strain Newman alters the response to biocide exposure.

Staphylococcus aureus reacts to changing environmental conditions such as heat, pH, and chemicals through global regulators such as the sae (S. aureus exoprotein expression) two-component signaling system. Subinhibitory concentrations of some antibiotics were shown to increase virulence factor expression. Here, we investigated the S. aureus stress response to sublethal concentrations of a commo...

متن کامل

Risk Factors of Nasal Carriage of Methicillin-Resistant Staphylococcus Aureus and its Antibiotic Susceptibility Pattern in Namazi hospital Healthcare Workers in Shiraz, Iran

Background & Aims: Methicillin-resistant Staphylococcus aureus (MRSA) is a major nosocomial pathogen worldwide. The aim of this study was to determine the risk factors of nasal carriage of MRSA and its antibiotic susceptibility pattern among healthcare workers at Namazi Hospital (Shiraz-Iran) Methods: In a cross-sectional study from July to November 2006, nasal swabs were taken from 600 stratif...

متن کامل

In the Staphylococcus aureus two-component system sae, the response regulator SaeR binds to a direct repeat sequence and DNA binding requires phosphorylation by the sensor kinase SaeS.

Staphylococcus aureus uses the SaeRS two-component system to control the expression of many virulence factors such as alpha-hemolysin and coagulase; however, the molecular mechanism of this signaling has not yet been elucidated. Here, using the P1 promoter of the sae operon as a model target DNA, we demonstrated that the unphosphorylated response regulator SaeR does not bind to the P1 promoter ...

متن کامل

Role of Fatty Acid Kinase in Cellular Lipid Homeostasis and SaeRS-Dependent Virulence Factor Expression in Staphylococcus aureus

The SaeRS two-component system is a master activator of virulence factor transcription in Staphylococcus aureus, but the cellular factors that control its activity are unknown. Fatty acid (FA) kinase is a two-component enzyme system required for extracellular FA uptake and SaeRS activity. Here, we demonstrate the existence of an intracellular nonesterified FA pool in S. aureus that is elevated ...

متن کامل

Effects of Silver Sulphadiazine on Production of Extracellular Proteins by Strains of Staphylococcus Aureus Isolated from Burns Wound

Previous studies had shown that sub-inhibitory concentrations of silver sulphadiazine (AgSD) stimulated the production of Toxic Shock Syndrome Toxin-1 in certain strains (responder strains) of Staphylococcus aureus and that protease production was also affected. No changes were detected in other strains (non-responders). Extracellular proteins from eleven responder and non-responder strains gro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013